Citations per year



Research Articles


Not Available
66. Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO2 into carboxylic acids

Zhang, X.; Kobayashi, Y.; Yu, L.; García-Melchor, M.; *Zhang, H. Submitted.


Not Available
65. Size-dependent activity of carbon dots for photocatalytic H2 generation

Casadevall, C.; Lage, A.; Mu, M.; Greer, H. F.; Antón-García, D.; Butt, J.; Jeuken, L. J. C.; Watson, G. W.; *García-Melchor, M.; *Reisner, E. Submitted.


Not Available
64. Proton movement in the second coordination sphere enables the reduction of azide to ammonia by an iron complex

Miller, T. J.; Kelly, O. R.; Peñas-Defrutos, M. N.; Lin, N.; *García-Melchor, M.; *Fout, A. R. Submitted.


Not Available
63. Demonstrating the source of inherent instability in NiFe LDH-based OER electrocatalysts

Tyndall, D.; Craig, M. J.; Gannonb, L.; McGuinness, C.; McEvoy, N.; Royd, A.; García-Melchor, M.; Browne, M. P.; *Nicolosi, V. Submitted.


Not Available
62. The problematic ArF-Alkynyl coupling with fluorinated aryls. From partial success with alkynyl stannanes to efficient solutions via mechanistic understanding of the hidden complexity

Marcos-Ayuso, G.; Peñas-Defrutos, M. N.; Gallego, A. M.; García-Melchor; Martínez-Ilarduya, J. M.; *Espinet, P. J. Am. Chem. Soc. 2022. Accepted


61. Building square planar cobalt(II) complexes via sodium mediated cobaltation of fluoroarenes

Logallo, L.; Mu, M.; *García-Melchor, M.; *Hevia, E. Angew. Chem. Int. Ed. 2022, e202213246.


60. Interrogating the oxygen evolution reaction mechanism at the atomic scale

*Zhang, H; *García-Melchor, M. Chem. Catal. 2022, 2, 1835-1837


59. Rational design of water oxidation catalysts informed by computational and experimental investigations

*García-Melchor, M.; *Zhang, H. Chem. Catal. 2022, 2, 1838-1840


58. γ-Agostic interactions in (MesCCC)Fe-Mes(L) complexes

Najera, D. C.; Peñas-Defrutos, M. N.; *García-Melchor, M.; *Fout , A. R. Chem. Commun. 2022, 58, 9626-9629.


57. Reaction descriptors for the oxygen evolution reaction: Recent advances, challenges and opportunities

Craig, M. J.; *García-Melchor, M. Curr. Opin. Electrochem. 2022, 101044.


56. Secondary coordination sphere influences the formation of Fe(III)-O or Fe(III)-OH complexes in nitrite reduction: A synthetic and computational study

Park, Y. J.; Peñas-DeFrutos, M. N.; Drummond, M. J.; Gordon, Z.; Kelly, O. R.; *García-Melchor, M.; *Fout, A. R. Inorg. Chem. 2022, 61, 8182–8192.


55. Tuning the local chemical environment of ZnSe quantum dots with dithiols towards photocatalytic CO2 reduction

Sahm, C. D.; Ciotti, A.; Mates-Torres, E.; Badiani, V.; Sokołowski, K.; Neri, G.; Cowan, A. J.; *García-Melchor, M.; *Reisner, E. Chem. Sci. 2022, 13, 5988–5998.



54. Chiroptically active 1D ultrathin AuAg nanostructures

Kehoe, D.; Mates-Torres, E.; Samokhvalov, P.; *García-Melchor, M.; *Gun’ko, Y. K. J. Phys. Chem. C, 2021, 126, 434–443.


53. Investigations of the effect of H2 in CO oxidation over ceria catalysts

*Davó-Quiñonero, A.; López-Rodríguez, S.; Chaparro-Garnica, C.; Martín-García, I.; Bailón-García, E.; Lozano-Castelló, D.; Bueno-López, A.; *García-Melchor, M. Catalysts, 2021, 11, 1556.


52. Elucidating the role of the metal catalyst and oxide support in Ru/CeO2 catalysed CO2 methanation

López-Rodríguez, S.; *Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; Herrera, F. C.; Pellegrin, E.; Escudero, C.; *García-Melchor, M.; *Bueno-López, A. J. Phys. Chem. C, 2021, 125, 25533–25544.


51. Applying active learning to the screening of molecular oxygen evolution catalysts

*Craig, M. J.; *García-Melchor, M. Molecules, 2021, 26, 6362.


50. A computational study of the electrochemical cyanide reduction
for ambient ammonia production on a nickel cathode

Brennan, K.; *Watson, G. W.; *García-Melchor, M. Catal. Sci. & Tech. 2021, 11, 5633-5640.


49. High-throughput screening and rational design to drive discovery in molecular water oxidation catalysis

Craig, M. J.; *García-Melchor, M. Cell Rep. Phys. Sci. 2021, 2, 100492.
Highlighted in: Future-Sciences News; TechXplore; University Times; La Repubblica Newspaper; The Independent Newspaper; ScienceDaily; The World News; Trinity News. Highlighted in: Journal Cover; Influential Papers 2021.


48. Imidazolium-modification enhances photocatalytic CO2 reduction on ZnSe quantum dots

Sahm, C.; Mates-Torres, E.; Eliasson, N.; Sokolowski, K.; Wagner, A.; Dalle, K.; Huang, Z.; Scherman, O.; *Hammarström, L.; *García-Melchor, M.; *Reisner, E. Chem. Sci. 2021, 12, 9078–9087.


47. Facilitating ferration of aromatic substrates through intramolecular sodium mediation

Maddock, L. C. H.; Mu, M.; Kennedy, A. R.; *García-Melchor, M.; *Hevia, E. Angew. Chem. Int. Ed. 2021, 60, 15296–15301.


46. Fundamental insights and rational design of low-cost polyoxometalates for the oxygen evolution reaction

Craig, M. J.; Barda-Chatain, R.; *García-Melchor, M. J. Catal. 2021, 393, 202–206.



45. Faster hydrogen production in alkaline media

Craig, M. J.; *García-Melchor, M. Nat. Catal. 2020, 3, 967–968.


44. Synthetic approaches to metallo-supramolecular Co(II) polygons and potential use for H2O oxidation

Ako, A. M.; Kathalikkattil, A. C.; Elliott, R.; Soriano-López, J.; McKeogh, I. M.; Zubair, M.; Twamley, B.; Zhu, N.; García-Melchor, M.; Kruger, P. E.; Schmitt, W. Inorg. Chem. 2020, 59, 14432–14438.


43. Cobalt-catalyzed ammonia borane dehydrogenation: Mechanistic insight and isolation of a cobalt hydride-amidoborane complex

Nugent, J. W.; *García-Melchor, M.; *Fout, A. R. Organometallics, 2020, 39, 2917–2927.


42. Discerning activity and inactivity in earth-abundant molecular oxygen evolution catalysts

Craig, M. J.; *García-Melchor, M. ChemCatChem, 2020, 12, 4775–4779.


41. Insights into the oxygen vacancy filling mechanism in CuO/CeO2 catalysts: A key step toward high selectivity in preferential CO oxidation

*Davó-Quiñonero, A.; Bailón-García, E.; López-Rodríguez, S.; Juan-Juan, J.; Lozano-Castelló, D.; García-Melchor, M.; Herrera, F. C.; Pellegrin, E.; Escudero, C.; *Bueno-López, A. ACS Catal. 2020, 10, 6532–6545.



40. Effect of chiral ligand concentration and binding mode on chiroptical activity of CdSe/CdS quantum dots

*Kuznetsova, V.; Mates-Torres, E.; Prochukhan, N.; Marcastel, M.; Purcell-Milton, F.; O’Brien, J.; Visheratina, Anastasia; Martínez-Carmona, M.; Gromova, Y.; *García-Melchor, M.; *Gun’ko, Y. K. ACS Nano, 2019, 13, 13560–13572.


39. Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential

Craig, M. J.; Coulter, G. O.; Dolan, E. T.; Soriano-López, J.; Mates-Torres, E.; Schmitt, W.; *García-Melchor, M. Nat. Commun. 2019. 10, 4993. Highlighted in:; Trinity News; Silicon Republic; Nat. Commun. Editors’ Highlights; Inverse; Hydrogen Fuel News; Nature World News; Chemistry World; Azo Clean Tech.


38. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates

Skafte, T. L.; Guan, Z.; Machala, M. L.; Gopal, C. B.; Monti, M.; Martinez, L.; Stamate, E.; Sanna, S.; Garrido Torres, J. A.; Crumlin, E. J.; García-Melchor, M.; *Bajdich, M.; *Chueh, W. C.; *Graves, C. Nat. Energ. 2019, 4, 846–855. Highlighted in: Sciencemag; Science Daily.


37. Untangling cooperative effects of pyridinic and graphitic nitrogen sites at metal-free N-doped carbon electrocatalysts for the oxygen reduction reaction

Behan, J. A.; Mates-Torres, E.; Stamatin, S. N.; Domínguez, C.; Iannaci, A.; Fleischer, K.; Hoque, Md. K.; Perova, T. S.; *García-Melchor, M.; *Colavita, P. E. Small, 2019, 15, 1902081. Highlighted in: Journal Front Cover.


36. Influence of carbon nanostructure and oxygen moieties on dopamine adsorption and charge transfer kinetics at glassy carbon surfaces

Behan, J. A.; Grajkowskia, F.; Jayasundara, D. R.; Vilella-Arribas, L.; *García-Melchor, M.; *Colavita, P. E. Electrochim. Acta, 2019, 304, 221–230.


35. RhIAr/AuIAr’ Transmetalation, a case of group exchange pivoting on formation of M-M’ bonds via oxidative insertion

Peñas-Defrutos, M. N.; *Bartolomé, C.; *García-Melchor, M.; *Espinet, P. Angew. Chem. Int. Ed. 2019. 131, 3539–3543.



34. Experimental and computational study of dopamine as an electrochemical probe of the surface nanostructure of graphitized N-doped carbon

Behan, J. A.; Hoque, Md. K.; Stamatin, S.; Perova, T.; Vilella, L.; *García-Melchor, M.; *Colavita, P. E. J. Phys. Chem. C, 2018, 122, 20763–20773.


33. Copper silver thin films with metastable miscibility for oxygen reduction electrocatalysis in alkaline electrolytes

Higgins, D.; Wette, M.; Gibbons, B. M.; Siahrostami, S.; Hahn, C.; Escudero-Escribano, M.; García-Melchor, M.; Ulissi, Z.; Davis, R. C.; Mehta, A.; *Clemens, B. M.; *Nørskov, J. K.; *Jaramillo, T. F. ACS Appl. Energy Mater. 2018, 1, 1990–1999.


32. Mimicking class I b Mn2-ribonucleotide reductase: A MnII2 complex and its reaction with superoxide

Magherusan, A. M.; Zhou, A.; Farquhar, E. R.; García-Melchor, M.; Twamley, B.; Que Jr., L.; *McDonald, A. R. Angew. Chem. Int. Ed. 2018, 57, 918–922.


31. Hidden aryl-exchange processes in stable 16e RhIII [RhCp*Ar2] complexes, and their unexpected transmetalation mechanism

Peñas-DeFrutos, M. N.; *Bartolomé, C.; *García-Melchor, M.; *Espinet, P. Chem. Commun. 2018, 54, 984–987.


30. Computational modelling of water oxidation catalysts

Soriano-López, J.; Schmitt, W.; *García-Melchor, M. Curr. Opin. Electrochem. 2018, 7, 22–30.



29. Equilibrium oxygen redox capacity of ultrathin CeO2-δ depends non-monotonically on large biaxial strain

Gopal, C. B.; García-Melchor, M.; Lee, S. C.; Shi, Y.; Monti, M.; Guan, Z.; Sinclair, R.; Bluhm, H.; *Vojvodic, A.; *Chueh, W. C. Nat. Commun. 2017, 8, 15360. Highlighted in: US Department of Energy; Silicon Republic; Newswise; Science Daily;;


28. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands

Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.; Li, Z.; Lammich, L.; *Vojvodic, A.; *Lauritsen, J. V. Nat. Commun. 2017, 8, 14169.


27. Rhodium complexes promoting C–O bond formation in reactions with oxygen: The role of superoxo species

Vilella, L.; García-Melchor, M.; Balcells, D.; *Lledós, A.; López, J.; Sancho, S.; Villarroya, B.; del Río, M.; Ciriano, M.; *Tejel, C. Chem. Eur. J. 2017, 23, 5232-5243. Featured as Frontispiece


26. Mechanistic insights into heterogeneous methane activation

Latimer, A. A.; Aljama, H.; Kakekhani, A.; Yoo, J. S.; Kulkarni, A.; Tsai, C.; García-Melchor, M.; Abild-Pedersen, F.; *Nørskov, J. K. Phys. Chem. Chem. Phys. 2017, 19, 3575-3581.



25. Two-dimensional materials as catalysts for energy conversion

Siahrostami, S.; Tsai, C.; Karamad, M.; Koitz, R.; García-Melchor, M.; Bajdich, M.; Vojvodic, A.; Abild-Pedersen, F.; Nørskov, J. K.; *Studt, F. Catal. Lett. 2016, 146, 1917-1921.


24. Gold-supported cerium-doped NiOx catalysts for water oxidation

Desmond Ng, J. W.; García-Melchor, M.; Bajdich, M.; Kirk, C.; Chakthranont, P.; *Vojvodic, A.; *Jaramillo, T. F. Nat. Energ. 2016, 1, 16053. Hot Paper


23. Homogeneously dispersed multimetal oxygen-evolving catalysts

Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Xu, J.; Liu, M.; Pelayo García de Arquer, F.; Thang Dinh, C.; Fan, F.; Yuan, M.; Yassitepe, E.; Janmohamed, A.; Chen, N.; Regier, T.; Han, L.; Xin, H. L.; Zheng, L.; Yang, H.; *Vojvodic, A.; *Sargent, E. H. Science, 2016, 352, 333-337. Hot Paper


22. Computationally probing the performance of hybrid, heterogeneous and homogeneous Ir-based catalysts for water oxidation

*García-Melchor, M.; Vilella, L.; López, N.; *Vojvodic, A. ChemCatChem, 2016, 8, 1792-1798. Highlighted in: Journal Front Cover


21. Dramatic mechanistic switch in Sn/AuI group exchanges: Transmetalation vs. oxidative addition

Carrasco, D.; *García-Melchor, M.; *Casares, J. A.; *Espinet, P. Chem. Commun. 2016, 52, 4305-4308.


20. Understanding and tuning the intrinsic hydrophobicity of rare-earth oxides: A DFT+U study

Carchini, G.; García-Melchor, M.; Łodziana, Z.; *López, N. ACS Appl. Mater. Interfaces 2016, 8, 152-160.



19. Enhancing catalytic CO oxidation over Co3O4 nanowires by substituting Co2+ with Cu2+

Zhou, M.; Cai, L.; Bajdich, M.; García-Melchor, M.; Li, H.; He, J.; Wilcox, J.; *Wu, W.; Vojvodic, A.; *Zheng, X. ACS Catal. 2015, 5, 4485-4491.


18. When the solvent locks the cage: Theoretical insight into the transmetalation of MOF-5 lattices and its kinetic limitations

Bellarosa, L.; Brozek, C.; García-Melchor, M.; Dinca, M.; López, N. Chem. Mater. 2015, 27, 3422-3429.


17. Unraveling the structure sensitivity in methanol conversion on CeO2: A DFT+U study

*Capdevila-Cortada, M.; García-Melchor, M.; *López, N. J. Catal. 2015, 327, 58-64.


16. Structure, activity, and deactivation mechanisms in double metal cyanide catalysts in the production of polyols

Almora-Barrios, N.; Pogodin, S.; Bellarosa, L.; García-Melchor, M.; Revilla-López, G.; García Rates, M.; Vázquez García, A. B.; Hernández Ariznavarreta, P.; *López, N. ChemCatChem, 2015, 7, 928-935.



15. Unique reaction path in heterogeneous catalysis: The concerted semi-hydrogenation of propyne to propene on CeO2

*García-Melchor, M.; Bellarosa, L.: *López, N. ACS Catal. 2014, 4, 4015-4020.


14. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: The example of CeO2

*García-Melchor, M.; *López, N. J. Phys. Chem. C. 2014, 118, 10921-10926.



13. Promoted ceria: A structural, catalytic, and computational study

Farra, R.; García-Melchor, M.; Eichelbaum, M.; Hashagen, M.; Frandsen, W.; Allan, J.; Girgsdies, F.; Schlögl, R.; Szentmiklósi, L.; López, N.; *Teschner, D. ACS Catal. 2013, 3, 2256-2268.


12. How theoretical simulations can address the structure and activity of nanoparticles

Carchini, G.; Almora-Barrios, N.; Revilla-López, G.; Bellarosa, L.; García-Muelas, R.; García- Melchor, M.; Pogodin, S.; Bloński, P.; *López, N. Top. Catal. 2013, 56, 1262-1272.


11. Stille coupling involving bulky groups feasible with gold cocatalyst

delPozo, J.; Carrasco, D.; Pérez-Temprano, M. H.; García-Melchor, M.; Álvarez, R.; *Casares, J. A.; *Espinet, P. Angew. Chem. Int. Ed. 2013, 52, 2189-2193.


10. Computational perspective on Pd-catalyzed C–C cross-coupling reaction mechanisms

García-Melchor, M.; Braga, A. A. C.; Lledós, A.; *Ujaque, G.; *Maseras, F. Acc. Chem. Res. 2013, 46, 2626-2634.


9. Book chapter: C–C bond formation

García-Melchor, M.; Solans-Monfort, X.; Ujaque, G. In “Comprehensive Inorganic Chemistry II”, J. Reedijk, K. Poeppelmeier, Eds. Elsevier: 2013, Vol. 9, Chapter 9.28, pp. 767-805.


8. Book: A theoretical study on Pd-catalyzed cross-coupling reactions

*García-Melchor, M. Springer Theses: 2013, pp. 136.



7. Coordination chemistry of new chiral P,N ferrocenyl ligands with half-sandwich ruthenium(II), rhodium(III), and iridium(III) complexes

Wei, M.-M.; García-Melchor, M.; Daran, J.-C.; Audin, C.; Lledós, A.; Poli, R.; *Deydier, E.; *Manoury, E. Organometallics, 2012, 31, 6669-6680.


6. Mechanistic exploration of the Pd-catalyzed copper-free Sonogashira reaction

García-Melchor, M.; Pacheco, M. C.; *Nájera, C.; *Lledós, A.; *Ujaque, G. ACS Catal. 2012, 2, 135-144.



5. Mechanistic analysis of iridium(III) catalyzed direct sp2 C-H arylation: A DFT study

García-Melchor, M.; *Gorelsky, S. I.; *Woo, T. K. Chem. Eur. J. 2011, 17, 13847-13853.


4. Cationic intermediates in the Pd-catalyzed Negishi coupling. Kinetic and DFT study of alternative transmetalation pathways in the Me-Me coupling of ZnMe2 and trans-PdMeCl(PMePh2)2

García-Melchor, M.; Fuentes, B.; Lledós, A.; *Casares, J. A.; *Ujaque, G.; *Espinet, P. J. Am. Chem. Soc. 2011, 133, 13519-13526.


3. Book chapter: Theoretical evaluation of phosphine effects in cross-coupling reactions

García-Melchor, M.; Ujaque, G.; Maseras, F.; Lledós, A. In “Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences”. Series: Catalysis by Metal Complexes (CMCO), M. Peruzzini, L. Gonsalvi, Eds.; Springer-Verlag: 2011, Vol. 37, Chapter 3, pp 57-84.



2. Palladium roundtrip in the Negishi coupling of trans-[PdMeCl(PMePh2)2] with ZnMeCl: Experimental and DFT study of the transmetalation step

Fuentes, B.; García-Melchor, M.; Lledós, A.; Maseras, F.; *Casares, J. A.; *Ujaque, G.; *Espinet, P. Chem. Eur. J. 2010, 16, 8596-8599.



1. The C-C reductive elimination in palladium complexes, and the role of coupling additives. A DFT study supported by experiment

Pérez-Rodríguez, M.; Braga, A. A. C.; García-Melchor, M.; Pérez-Temprano, M. H.; Casares, J. A.; Ujaque, G.; de Lera, A. R.; *Álvarez, R.; *Maseras, F.; *Espinet, P. J. Am. Chem. Soc. 2009, 131, 3650-3657.